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The accurate computation of periodic orbits, particularly those of long period, is very important for
studying a number of interesting properties of dynamical systems. In this paper, we implement a method
for computing periodic orbits of dynamical systems efficiently and to a high degree of accuracy. This
method converges rapidly, within relatively large regions of initial conditions, and is independent of the
local dynamics near periodic points. The only computable information required is the signs of various
function evaluations carried out during the integration of the equations of motion. Here we apply this
method to a Duffing oscillator and illustrate its advantages by comparing it with other widely used per-

turbation techniques.

PACS number(s): 02.70. —c, 05.45.+b, 02.60.Lj

L. INTRODUCTION

In the study of dynamical systems the computation of
periodic solutions and the knowledge of their stability
properties are of great importance. In particular, there
are fundamental problems of nonlinear dynamics, such as
the period-doubling route to chaos [1] and the breakup of
quasiperiodic motion [2], which make crucial use of this
information for periodic orbits of arbitrarily long period.

As is well known, the more classical and widely used
approaches to this problem are perturbative in character
and essentially rely on a systematic search of phase space
in order to locate the initial conditions for each orbit. In
many dynamical systems, however, such a search be-
comes unsuccessful or too time consuming to be of prac-
tical use, especially in the case of orbits of very long
period.

In this paper, we apply an efficient method whose con-
vergence properties are independent of the local dynam-
ics near the periodic orbit. This method is especially use-

ful in the case of conservative dynamical systems, which

possess many periodic orbits, often of the same period,
close to each other in phase space.

In Sec. II we briefly review the essential features of
other, widely used perturbation methods for computing
periodic orbits. The above-mentioned methods rely on
the computation of the monodromy matrix of the linear-
ized equations around any point and compute the ap-
propriate corrections, using information taken from this
matrix. This introduces additional inaccuracies caused
by the local properties of the dynamics near the points of
periodic orbits. In the same section we also describe the
determination of the stability of periodic orbits by using
the eigenvalues of the Jacobian of the Poincaré return
map at any point of these orbits.

In Sec. III, we briefly present an efficient method for
computing periodic orbits. According to this method, we
use a characteristic polyhedron, surrounding a point of
the orbit, and by successive refinements of this polyhed-
ron we calculate the desired periodic orbit. The only in-
formation needed for this refinement is the signs of vari-
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ous function evaluations on the vertices of the polyhed-
ron. More details of this method can be found in (3,4].

In Sec. IV, we apply and compare the above methods
to the computation of long periodic orbits of a driven
conservative Duffing oscillator. We demonstrate that our
method is more efficient, by showing that it has
significantly larger regions of convergence than the per-
turbation methods.

II. PERTURBATION METHODS
FOR COMPUTING PERIODIC ORBITS

Let us consider a conservative dynamical system of the
form

x=f(x,t), (1)

with x=(x,% )ER? and f=(f,,f,) periodic in ¢ with fre-
quency w. We shall look for initial conditions of periodic
orbits of period p of system (1) that intersect the surface
of section

S, ={(x(t), *(t)) with tk=to+k%’, keN],

()

at a finite number of points p. Thus the dynamics is stud-
ied in connection with a Poincaré map <I)P=P,O:2 ,0—>2 19?
constructed by following the solutions of (1) in continu-
ous time. According to the usual perturbation methods
[5,6], one starts with an initial vector xBO)EE,O near a

desired periodic orbit and then iteratively estimates suc-
cessive corrections 8x{, 8x{, 8x{?), ..., such that the
sequence of points

xgtD=x{"+8xy, X EZ, , i=0,1,... 3)
will eventually converge to lim;  x§'=x¥ with
A * _ 2w
x(x3,0)=x |x5 , T=p— (4)
)

The latter is the periodicity condition. T is the total time
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needed for the orbit to return to the point x§.

Supposing that the (i+1)th approximation gives the
periodic solution and applying Taylor’s formula to both
sides of (4) we get that, up to first-order terms, the correc-
tions required to obtain this approximation from the pre-
vious one are the solutions of the system

x(x,0)+8x ) =x (x{, T) + ox sx ) + ox 52l |

9x ox,

a5 o )
x(xf,00+ 8% =% (x{), T)+ ——bx ) + 8% ,

0xq A%,

where the partial derivatives correspond to the ith ap-
proximation of the periodic point x§’ and are evaluated at
t=T. These partial derivatives can be computed by in-
tegrating the variational equations of system (1):

d [ox |_of ax  of ax
dt | ox, 9x Ox, 3x Oxq
(6)
d | ox |_ of dx af ox
L =200 00 L 8 0%
dr | 3%, dx 9x, % dx,

We name the above-mentioned technique the variational
perturbation method (VPM). The derivatives can also be
approximated by the relations

ox  X(xogt+h,xy)—x(xg,Xq)

ax, h ’

dx  X(xg,xo+h)—x(xg,Xq)

RER h ’
with an appropriately small value of h. We call the corre-
sponding technique the Euler perturbation method
(EPM).
In both cases the corrections are repeated N times until
relation (4) holds within a specified accuracy ¢, i.e.,

M—x(xV, T)|<e. (8)

|Xo
Having thus obtained the periodic orbit, we can deter-
mine its stability by computing the eigenvalues of the
monodromy matrix at this point:

0x 9x
axO axo

f( XE)N)’ T) = ax- ax > (9)
Oxy  3Ax,

where the derivatives of x,X are calculated by integrating
system (6), or from relations (7), at this approximation.

Now, since (1) is a conservative system,
det#(x{""T)=1 and (9) has either complex eigenvalues
with [A;|=1, i=1,2, in which case the periodic orbit is
stable (elliptic), or real with, say, |A;|>1, |A,| <1, in
which case the periodic orbit is unstable.

III. THE CHARACTERISTIC POLYHEDRON
CRITERION AND CHARACTERISTIC BISECTION

In this section, we briefly discuss a method based on
the characteristic polyhedron concept for the computation
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of periodic orbits. A detailed description of this method
can be found in [3,4]. First we implement topological de-
gree theory to give a criterion for the existence of a
periodic orbit within a given region of the phase space of
the system. Then we construct a characteristic polyhed-
ron containing this orbit. Using a generalized bisection
method, we iteratively refine this polyhedron to calculate
the orbit within a predetermined accuracy.

The problem of finding periodic orbits of period p of
dynamical systems in R” *! amounts to fixing one of the
variables, say, x,;;=const, and locating points
X*=(x},x5,...,x,) on an n-dimensional surface of
section 2,0 that satisfy the equation

PAX*)=X*, (10)

where 7 =P,0:2,0—+2,0 is the Poincaré map of the sys-
tem. Obviously, this is equivalent to solving the system

F(X)=0, an

with F=(f,f5, ..., ,)=®?—1I,, where I, is the n Xn
identity matrix and @=(0,0, . . ., 0) is the origin of R".

As is known, if we have a function F, which is continu-
ous in a bounded domain D and the topological degree of
F at O relative to D is not equal to zero, then there is at
least one solution of system (11) within D [7]. This cri-
terion can be used, in combination with the construction
of a suitable n polyhedron, called the characteristic po-
lyhedron (CP), for the calculation of a solution contained
in this region. This can be done as follows. Let M, be
the 2"Xn matrix whose row are formed by all possible
combinations of —1 and 1. Consider now an oriented n
polyhedron IT”, with vertices Y, k=1,...,2" 1If the
2" X n matrix of signs associated with F and 11", $(F;I1"),
whose entries in the kth row are the vector

sgnF(Y, )=(sgnf (Y ),sgnf,(Ty), ...,sgnf,(T)),

(12)

is identical to J/,, possibly after some permutations of
these rows, then I, is called the characteristic polyhedron
relative to F. Furthermore, if F is continuous, then, un-
der some suitable assumptions on the boundary of I17,

deg[F,II",0]= 3  sgndetdp(X)==+150 (13)
XeF Lo

(see [8] for a proof), which implies the existence of a
periodic orbit inside II”. For more details on how to con-
struct a CP and locate a desired periodic orbit see
[3,4,9,10].

Next we describe a generalized bisection method that,
in combination with the above-mentioned criterion, pro-
duces a sequence of characteristic polyhedra of decreas-
ing size always containing the desired solution in order to
calculate it within a given accuracy (characteristic bisec-
tion). This version of bisection does not require the com-
putation of the topological degree at each step to secure
its nonzero value, as others do [11-13]. It can also be ap-
plied to problems with imprecise function values since it
depends only on their signs. The method simply amounts
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to constructing another refined CP, by bisecting a known
one, say II". We compute the midpoint M of a one-
simplex, e.g., {Y;,Y;), which is one edge of II". Then
we obtain another CP, II}, by comparing the sign of
F(M) with that of F(;) and F(Y;) and substituting M
for that vertex for which the signs are identical (see
[4,8,14,15] for details). Then we continue with another
edge. The number of iterations required to obtain a
refined characteristic polyhedron Il whose longest edge
length A(II}) satisfies A(II}) =g, for some €E€(0,1), is
given by [8]

&= Tlogy[A(TTMe 1] (14)

where the notation I' 7T refers to the smallest integer,
which is not less than the real number quoted.

IV. NUMERICAL RESULTS

Let us apply these methods to the driven conservative
Duffing oscillator described by

Xx=x—x3+acoswt . (15)

We integrate numerically Eq. (15), using, e.g., the
Bulirsch-Stoer algorithm with appropriate adaptive step-
size control [16,17], and compute successive intersection
points of the solutions with the surface of section (2),
which we plot in Fig. 1 for several initial conditions.

We observe that around the elliptic period-3 periodic
orbit, marked by P,P,,P; in Fig. 1, there are orbits of
higher period, with islands surrounding them, located in
a narrow strip near the boundary between the period-3 is-
lands and a large chaotic region of the system. This
makes the computation of periodic orbits of high period
quite difficult because of the concentration of many
periodic orbits in a very small region. In Fig. 2 we plot a
magnification of box A of Fig. 1. Here we focus on an
orbit of period 51, mark one of its points by P, and en-
close it in box B. Magnifying then box B, we observe, in
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FIG. 1. Surface of section points of system (15) for parame-
ters a=0.05, ® =2, and several initial conditions.
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FIG. 2. Magnification of box A of Fig. 1. Note the period-51
point at P and the islands of period 663 surrounding it, in box B.

Fig. 3, an orbit of period 663 forming a string of 13 is-
lands around the period-51 orbit. Proceeding one step
further, we magnify box C of Fig. 3 about one of these
663 periodic points and observe, in Fig. 4, a chain of 9 is-
lands belonging to a period 5967 orbit, etc.

We shall apply and compare the methods described in
Secs. II and III to the computation of the above sequence
of periodic orbits. The periodic orbits have been calcu-
lated with accuracy e=10"8 The value of 4 appearing
in (7) is taken equal to 1077,

Let us define the ‘“basin of convergence” of each
method by

B;={(x{,x) such that ith method converges to x§},

(16)
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FIG. 3. Magnification of box B of Fig. 2. We observe here a
chain of 13 islands of period 663, one of which we enclose in
box C.
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FIG. 4. Magnification of box C of Fig. 3. We show here the
period-5967 periodic points at the center of 9 islands around the

central point of period 663.

where the numbering i =1,2,3 refers to the VPM, EPM,
and CP method (CPM), respectively. Also, we denote by
D; the radius of the largest ball, centered at the periodic
orbit such that, for every initial guess within it, the corre-
sponding method converges to this orbit.

What we find is that the CPM always converges to the
periodic solution, within any region B that does not con-
tain orbits whose period is a submultiple of the period of
the desired orbit. This means that the CPM can con-
verge equally well to stable as well as to unstable periodic
orbits, independently of where they are located.

The other two methods, the VPM and EPM, behave
differently: We have found that the higher the period, the
smaller the regions of convergence B, and B,, in compar-
ison with region B; of the CPM. Thus, for periodic or-
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bits of large period, it turns out that the VPM and EPM
need an initial guess lying within a distance from the
solution smaller than the accuracy required for its com-
putation. A comparison between these methods is shown
in Table I, where we list the computed points of the
periodic orbits x§ and the corresponding radii D,, D,,
and D;.

In Figs. 5(a)-5(c), we show the basins of convergence
(shaded areas) of the VPM and EPM for the orbits of
period 27, 51, and 663, discussed above. We observe that
the corresponding basins decrease considerably in size as
the period of the orbit increases. On the other hand, the
convergence regions of the CPM are generally one order
of magnitude larger than those of the other two methods
and certainly extend over the whole x,% region shown in
these figures. In fact, the only limitation of the CPM is
related to the accuracy of the integration method to the
extent that it can ensure the correct calculation of the
algebraic signs required.

V. CONCLUSION

A method is proposed for computing long periodic or-
bits of conservative dynamical systems, using the Poin-
caré map on a surface of section. This method employs
topological degree theory and proceeds by constructing a
so-called characteristic polyhedron around a region
where a point of the desired periodic orbit is expected to
exist. It converges to this point by successively bisecting
the sides of the CP. Since this method is independent of
the local dynamics of the orbit and relies mainly on the
signs of function evaluations at the vertices of the CP, it
is more efficient than other more classical methods and
enables us to compute orbits of much higher period. Be-
sides, it is globally convergent method, provided that the
desired solution is isolated in some region.

We have compared our method with two classical per-
turbation approaches on the example of a driven Duffing

TABLE 1. Comparison of three methods for the computation of periodic orbits x§. The corre-
sponding radii D, (VPM), D, (EPM) and D; (CPM) are also listed (S denotes stable, U unstable).

Period (stability) x*=(x¥,%5) D, D, D,
1(8) (— 1.024 572 46, 0.000 000 00) 0.099 0.099 0.5
2(S) (—0.261 698 07 ,0.000 000 00) 0.078 0.078 0.1
3(8) (0.453 504 79, 0.662 916 05) 0.078 0.078 0.1
12 (S) (—0.066 078 06, 0.533 487 41) 0.014 0.014 0.048
12 (U) (—0.069 012 27, 0.485 169 47) 0.016 0.016 0.048
27 (S) (0.060749 18,0.515 763 76) 0.018 0.018 0.061
27 (U) (0.028 231 33, 0.464 002 72) 0.006 0.006 0.061
51 (S) (—0.009 206 48, 0.470 738 66) 0.006 4 0.006 4 0.023
51 (U) (—0.007 967 42, 0.494 051 15) 0.002 0.002 0.023
153 (S) (—0.014 535 18, 0.463 955 14) 0.000 57 0.000 57 0.0029
153 (U) (—0.011 955 00, 0.462 649 92) 0.0008 0.0008 0.0029
663 () (—0.012 299 20, 0.460 359 10) 0.00028 0.00028 0.001 3
663 (U) (—0.013 465 63,0.460 936 01) 0.00007 0.00007 0.0013
5967 (S) (—0.012 125 94, 0.460 076 38) 0.000014 0.000014 0.000 33
5967 (U) (—0.012 457 42, 0.460 125 23) 0.000001 4 0.000 001 0.000 33
41769 (S) (—0.012 163 80, 0.460 054 70) 0 0 0.000 006
41769 (U) (—0.012 159 92, 0.460 049 80) 0 0 0.000 006
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FIG. 5. Basins of convergence (shaded areas) of the VPM, plotted on the same scale, for orbits of (a) period 27, (b) period 51, and
(c) period 663. The exact position of the periodic point is marked by X. The corresponding regions of the other perturbation

method (EPM) do not differ significantly from those of the VPM.

oscillator and have found that the basins of convergence
of the perturbation methods are much smaller than those
of the CPM and rapidly diminish in size as the period be-
comes longer. Thus we expect the CPM to be especially
useful in cases where a sequence of long periodic orbits is
known to exist, such as, e.g., in the problem of approxi-
mating invariant surfaces by sequences of periodic orbits
in higher-dimensional systems [10], following similar
work on area-preserving maps [2]. In this context, in-
teresting results are expected in Hamiltonian systems of
three or more degrees of freedom, or 2N (N >2) -dimen-

sional symplectic maps to which the CPM has already
started to be successfully applied [10].
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